본문 바로가기

개발자

지식은 이제 데이터의 형태를 갖고 있다.

반응형

 

 

  역사는 반복된다. 초기 AI 연구는 오늘날처럼 사람의 추론 능력 인지 모델 모델링에 초점을 맞췄었다. 초기 AI 연구원들이 직면했던 3가지 문제(지식, 설명, 유연성)는 지금도 머신러닝(ML) 시스템에 대한 담론의 중심으로 남아있다.

 

  지식은 이제 데이터의 형태를 갖고 있으며, 뉴럴 네트워크의 취약성으로 인해 유연성(적응성)이 요구되고 있다. 데이터에 조금 문제가 있을 때 아주 다른 결과가 생성될 수 있기 때문이다. 설명 가능성(Explainability) 또한 우선순위 중 하나로 부상했다. 이제 기계가 어떻게 생각하는지 물어야 하는 것이다. 인간의 생각 방식을 복제하려 했던 60년 전을 떠올리면 꽤나 아이러니한 변화다.

 

원문기사보기 : 인공지능의 간략한 역사



반응형

캐어랩 고객 지원

취업, 창업의 막막함, 외주 관리, 제품 부재!

당신의 고민은 무엇입니까? 현실과 동떨어진 교육, 실패만 반복하는 외주 계약, 아이디어는 있지만 구현할 기술이 없는 막막함.

우리는 알고 있습니다. 문제의 원인은 '명확한 학습, 실전 경험과 신뢰할 수 있는 기술력의 부재'에서 시작됩니다.

이제 고민을 멈추고, 캐어랩을 만나세요!

코딩(펌웨어), 전자부품과 디지털 회로설계, PCB 설계 제작, 고객(시장/수출) 발굴과 마케팅 전략으로 당신을 지원합니다.

제품 설계의 고수는 성공이 만든 게 아니라 실패가 만듭니다. 아이디어를 양산 가능한 제품으로!

귀사의 제품을 만드세요. 교육과 개발 실적으로 신뢰할 수 있는 파트너를 확보하세요.

지난 30년 여정, 캐어랩이 얻은 모든 것을 함께 나누고 싶습니다.

카카오 채널 추가하기

카톡 채팅방에서 무엇이든 물어보세요

당신의 성공을 위해 캐어랩과 함께 하세요.

캐어랩 온라인 채널 바로가기

캐어랩