반응형
보통 정수나 입력받은 값에 1이 몇개인지 셀경우가 있죠. 그때 사용하면 좋구요.
입력받은 어떤 정수값에서 1로 설정된 Bit 수가 몇개인지 셀때 public member function : bitset::count 를 사용한다.
Returns the amount of bits in the bitset that are set (i.e., have a value of 1).
이걸 올린 계기는 "생각하는 프로그래밍" 에 1장에 좋은 예를 보면서 한번 찾아봤습니다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | // bitset::count #include <iostream> #include <string> #include <bitset> using namespace std; int main () { bitset<8> myset (string("10110011")); cout << "myset has " << int(myset.count()) << " ones "; cout << "and " << int(myset.size()-myset.count()) << " zeros.\n"; return 0; } output : 5, 3 | cs |
이게 예제~ 출처가 http://www.cplusplus.com/
실제로 자기가 알고리즘을 짜서 해결할려면 이렇게 짠다.
1 2 3 4 5 6 7 8 9 10 11 12 13 | int Number_of_Integer(int input_value) { unsigned int number_of_bits_set = 0; for (; input_value > 0 ; input_value >>= 1) number_of_bits_set += input_value & 1; return number_of_bits_set; } | cs |
더 빠른 방법들을 찾아보니, 아주 여러가지 방법이 있다.
아래 8가지 방법들의 코드와 검증코드, 비교까지 잘 ~
기억 : http://gurmeet.net/puzzles/fast-bit-counting-routines/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 | /* ========================================================================== Bit Counting routines Author: Gurmeet Singh Manku (manku@cs.stanford.edu) Date: 27 Aug 2002 ========================================================================== */ #include <stdlib.h> #include <stdio.h> #include <limits.h> /* Iterated bitcount iterates over each bit. The while condition sometimes helps terminates the loop earlier */ int iterated_bitcount (unsigned int n) { int count=0; while (n) { count += n & 0x1u ; n >>= 1 ; } return count ; } /* Sparse Ones runs proportional to the number of ones in n. The line n &= (n-1) simply sets the last 1 bit in n to zero. */ int sparse_ones_bitcount (unsigned int n) { int count=0 ; while (n) { count++ ; n &= (n - 1) ; } return count ; } /* Dense Ones runs proportional to the number of zeros in n. It first toggles all bits in n, then diminishes count repeatedly */ int dense_ones_bitcount (unsigned int n) { int count = 8 * sizeof(int) ; n ^= (unsigned int) -1 ; while (n) { count-- ; n &= (n - 1) ; } return count ; } /* Precomputed bitcount uses a precomputed array that stores the number of ones in each char. */ static int bits_in_char [256] ; void compute_bits_in_char (void) { unsigned int i ; for (i = 0; i < 256; i++) bits_in_char [i] = iterated_bitcount (i) ; return ; } int precomputed_bitcount (unsigned int n) { // works only for 32-bit ints return bits_in_char [n & 0xffu] + bits_in_char [(n >> 8) & 0xffu] + bits_in_char [(n >> 16) & 0xffu] + bits_in_char [(n >> 24) & 0xffu] ; } /* Here is another version of precomputed bitcount that uses a precomputed array that stores the number of ones in each short. */ static char bits_in_16bits [0x1u << 16] ; void compute_bits_in_16bits (void) { unsigned int i ; for (i = 0; i < (0x1u<<16); i++) bits_in_16bits [i] = iterated_bitcount (i) ; return ; } int precomputed16_bitcount (unsigned int n) { // works only for 32-bit int return bits_in_16bits [n & 0xffffu] + bits_in_16bits [(n >> 16) & 0xffffu] ; } /* Parallel Count carries out bit counting in a parallel fashion. Consider n after the first line has finished executing. Imagine splitting n into pairs of bits. Each pair contains the <em>number of ones</em> in those two bit positions in the original n. After the second line has finished executing, each nibble contains the <em>number of ones</em> in those four bits positions in the original n. Continuing this for five iterations, the 64 bits contain the number of ones among these sixty-four bit positions in the original n. That is what we wanted to compute. */ #define TWO(c) (0x1u << (c)) #define MASK(c) (((unsigned int)(-1)) / (TWO(TWO(c)) + 1u)) #define COUNT(x,c) ((x) & MASK(c)) + (((x) >> (TWO(c))) & MASK(c)) int parallel_bitcount (unsigned int n) { n = COUNT(n, 0) ; n = COUNT(n, 1) ; n = COUNT(n, 2) ; n = COUNT(n, 3) ; n = COUNT(n, 4) ; /* n = COUNT(n, 5) ; for 64-bit integers */ return n ; } /* Nifty Parallel Count works the same way as Parallel Count for the first three iterations. At the end of the third line (just before the return), each byte of n contains the number of ones in those eight bit positions in the original n. A little thought then explains why the remainder modulo 255 works. */ #define MASK_01010101 (((unsigned int)(-1))/3) #define MASK_00110011 (((unsigned int)(-1))/5) #define MASK_00001111 (((unsigned int)(-1))/17) int nifty_bitcount (unsigned int n) { n = (n & MASK_01010101) + ((n >> 1) & MASK_01010101) ; n = (n & MASK_00110011) + ((n >> 2) & MASK_00110011) ; n = (n & MASK_00001111) + ((n >> 4) & MASK_00001111) ; return n % 255 ; } /* MIT Bitcount Consider a 3 bit number as being 4a+2b+c if we shift it right 1 bit, we have 2a+b subtracting this from the original gives 2a+b+c if we shift the original 2 bits right we get a and so with another subtraction we have a+b+c which is the number of bits in the original number. Suitable masking allows the sums of the octal digits in a 32 bit number to appear in each octal digit. This isn't much help unless we can get all of them summed together. This can be done by modulo arithmetic (sum the digits in a number by molulo the base of the number minus one) the old "casting out nines" trick they taught in school before calculators were invented. Now, using mod 7 wont help us, because our number will very likely have more than 7 bits set. So add the octal digits together to get base64 digits, and use modulo 63. (Those of you with 64 bit machines need to add 3 octal digits together to get base512 digits, and use mod 511.) This is HACKMEM 169, as used in X11 sources. Source: MIT AI Lab memo, late 1970's. */ int mit_bitcount(unsigned int n) { /* works for 32-bit numbers only */ register unsigned int tmp; tmp = n - ((n >> 1) & 033333333333) - ((n >> 2) & 011111111111); return ((tmp + (tmp >> 3)) & 030707070707) % 63; } void verify_bitcounts (unsigned int x) { int iterated_ones, sparse_ones, dense_ones ; int precomputed_ones, precomputed16_ones ; int parallel_ones, nifty_ones ; int mit_ones ; iterated_ones = iterated_bitcount (x) ; sparse_ones = sparse_ones_bitcount (x) ; dense_ones = dense_ones_bitcount (x) ; precomputed_ones = precomputed_bitcount (x) ; precomputed16_ones = precomputed16_bitcount (x) ; parallel_ones = parallel_bitcount (x) ; nifty_ones = nifty_bitcount (x) ; mit_ones = mit_bitcount (x) ; if (iterated_ones != sparse_ones) { printf ("ERROR: sparse_bitcount (0x%x) not okay!\n", x) ; exit (0) ; } if (iterated_ones != dense_ones) { printf ("ERROR: dense_bitcount (0x%x) not okay!\n", x) ; exit (0) ; } if (iterated_ones != precomputed_ones) { printf ("ERROR: precomputed_bitcount (0x%x) not okay!\n", x) ; exit (0) ; } if (iterated_ones != precomputed16_ones) { printf ("ERROR: precomputed16_bitcount (0x%x) not okay!\n", x) ; exit (0) ; } if (iterated_ones != parallel_ones) { printf ("ERROR: parallel_bitcount (0x%x) not okay!\n", x) ; exit (0) ; } if (iterated_ones != nifty_ones) { printf ("ERROR: nifty_bitcount (0x%x) not okay!\n", x) ; exit (0) ; } if (mit_ones != nifty_ones) { printf ("ERROR: mit_bitcount (0x%x) not okay!\n", x) ; exit (0) ; } return ; } int main (void) { int i ; compute_bits_in_char () ; compute_bits_in_16bits () ; verify_bitcounts (UINT_MAX) ; verify_bitcounts (0) ; for (i = 0 ; i < 100000 ; i++) verify_bitcounts (lrand48 ()) ; printf ("All bitcounts seem okay!\n") ; return 0 ; } | cs |
도움이 되엇으면 좋겠네요~ 대한민국 개발자 만세 ! 거침없이 전진하라 !
반응형
'개발자 > C#' 카테고리의 다른 글
c# 콤보박스 자동 완성 기능을 구현하는 다른 방법 (0) | 2012.10.01 |
---|---|
c# 콤보박스 자동완성 기능을 구현 - 리스트박스,텍스트박스에서도 동일한 원리 (1) | 2012.09.26 |
Infrasound 관측망과 인공발파 식별연구 (0) | 2012.07.29 |
C# 파일 없으면 만들어 쓰고 있으면 한줄씩 읽어오는 코드 (1) | 2012.07.20 |
wfdisc 파일정보 보여주는 프로그램 (0) | 2011.12.30 |
상속이냐 합성이냐 (0) | 2011.03.10 |
35 Free C and C++ Programming Books and Ebooks (0) | 2011.03.01 |
C++ 관련 책 list 입니다. (0) | 2011.03.01 |
더욱 좋은 정보를 제공하겠습니다.~ ^^